Wideband Channel Characteristics for Indoor Reception of Satellite Transmissions at 2.4 GHz

ISART Boulder, 27 February 2007

Outline

S@TCOM study

- Requirement for data
- Previous studies
- The wideband channel
- Design
- Measurement campaign
- Data reduction
- Results
- Conclusions

Requirement for wideband data

- Satellite systems are proposed that will offer (some degree) of indoor coverage
 - IMT-2000 systems at ~2 GHz
 - Galileo at 1.2 / 1.5 GHz
 - S-DAB at 1.5 GHz
- System designers therefore need to understand the nature of the wideband satellite-indoor channel
 - Inform choice of modulation characteristics
 - Impact of polarisation
 - Elevation dependence

Previous studies

- Aegis study on building penetration loss at 1-5 GHz
 - Used helium balloon to explore variety of elevation angles
 - Results presented at ICAP '03
- Wideband outdoor-indoor measurements at cellular frequencies & 2.4 GHz
 - Generally near-horizontal paths

The wideband channel (1)

The wideband channel (2)

Mean delay:

$$T_d = \frac{\sum_{i=1}^n P_i \tau_i}{\sum_{i=1}^n P_i}$$

Delay Spread:

$$S = \sqrt{\frac{1}{P_t} \sum_{i=1}^{n} p_i \tau_i^2 - T_d^2}$$

(P.1407)

Experimental approach (2)

Autocorrelation of PN sequence

Experimental approach (1)

Channel sounder used the 'sliding correlator' approach

Experimental approach (3)

Sounder parameters

Carrier frequency	2400 MHz
Chip rate	100 Mb/s
Sequence length	511 bits
dynamic range (max)	54 dB
Slip rate	12 kHz
IF Filter BW	24 KHz
Scaling factor	8,167
IF frequency	45 MHz

Transmitter design (1)

Transmitter design (2)

Transmitted spectrum (without filter)

Transmitter design (3)

Balloon payload

Receiver design (1)

Simplified, low-cost, architecture

Receiver design (2)

Performance of integrating filter Correlator Output

Receiver design (3)

Correlating receiver

Measurement campaign (1)

- Need to approximate planar wavefront as closely as possible
- •D² loss of direct & multipath compnents

Measurement campaign (2)

CP antenna design

Measurement locations (1)

Measurement locations (2)

Data reduction (1)

Time-series of channel temporal response

Data reduction (2)

21 new acf db

Data reduction (3)

Antenna pointing

 Need to discard results where overall received power <-3dB w.r.t. boresight

Clipping level

Manual inspection & setting of appropriate level

Data reduction (4)

Clipping levels

Overall results

Delay spread vs. loss

Polarisation dependence

- •Strongest multipath componets from 1st order reflections
- Rejected by mutually CP antennas

Polarisation dependence

Spread of measurements

Overall cumulative statistics

CP-VP statistics

Leeds University measurements

A related S@TCOM project

- 'Galileo discriminators for urban and indoor environment and exploitation of the mass market"
- Astrium / Roke Manor / Leeds University
- Sounder operated at 1.6 GHz
 - 'Spectrum-friendly' modulation
 - Results comparable to Aegis findings

Leeds University measurements

- median delay spread
 - Leeds: 30-65 ns
 - Aegis: 10-80 ns
- benign location range of delay spread
 - Leeds: 11-60 ns
 - Aegis: 9-62 ns
- worst location range of delay spread
 - Leeds: 9 193 ns
 - Aegis: 5 -105 ns

Building loss measurements

Building loss measurements

Dependence on floor (2.4 GHz)

Building loss measurements

Conclusions

- Indoor satellite channel exhibits great variability
- Median delay spread typically 10-80ns
 - Possible ISI for systems with 10-100 MHz bandwidth
 - Worst case delay extends to 105ns in current study
- CP antennas minimise delay spread
- Building median penetration typically 12dB
 - Some bandwidth & elevation dependence

Thank you!

Richard Rudd

Aegis Systems Limited

www.aegis-systems.co.uk

